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Abstract Following Fehr and Gäechter (Am Econ Rev 90(4):980–994, 2000),
a large and growing number of experiments show that public goods can be provided
at high levels when mutual monitoring and costly punishment are allowed. Nearly all
experiments, however, study monitoring and punishment in a complete network where
all subjects can monitor and punish each other. The architecture of social networks
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becomes important when subjects can only monitor and punish the other subjects to
whom they are connected by the network. We study several incomplete networks and
find that they give rise to their own distinctive patterns of behavior. Nevertheless, a
number of simple, yet fundamental, properties in graph theory allow us to interpret
the variation in the patterns of behavior that arise in the laboratory and to explain the
impact of network architecture on the efficiency and dynamics of the experimental
outcomes.

Keywords Networks · Public goods · Monitoring · Costly punishment · Experiment

JEL Classification C91 · C92 · D62 · D63 · H41

1 Introduction

A perennial question in economics concerns the conditions under which self-interested
individuals cooperate to achieve socially efficient outcomes. In a seminal experiment,
Fehr and Gächter (2000) show that public goods can be provided at high levels if sub-
jects can monitor the contributions made by other subjects and punish those who are
unwilling to contribute. This stands in stark contrast to the experimental results from
the familiar public good game in the literature, in which low provision is common
(Ledyard 1995).

A number of experimental papers extend Fehr and Gächter (2000) by making pun-
ishment more or less costly to the monitor (Anderson and Putterman 2005), making
punishment only symbolic (Masclet et al. 2003), or by going in the opposite direction
and equating punishment with expulsion from the group (Cinyabuguma et al. 2005).
In all of these experiments, the authors also find high levels of provision.

A central assumption of nearly all experiments is full monitoring—everyone can
monitor everybody else. In reality, individuals living in any society are bound together
by a social network, and often they can only observe the behavior of those who are in
their local environment. In public goods experiments, if each subject can observe the
actions of only a small number of other subjects, it is not clear that mutual monitoring
can give rise to cooperative outcomes. Clearly, partial monitoring can be an obstacle
to cooperation if, for example, a critical mass of potential punishers is required to deter
shirking or punishers are only emboldened to intervene when they know that they are
supported by others.

The goal of this paper is to identify the impact of partial monitoring on the effec-
tiveness of mutual monitoring and punishment. We represent the partial monitoring
structure by a graph that specifies the monitoring technology of the group—that is,
who monitors whose actions. Each subject is located at a node of the graph, and subject
i can monitor subject j if and only if there is an edge leading from node i to node j .
The experiments reported here involve the eight networks [1]–[8] illustrated in Fig. 1
below. An arrow pointing from subject i to subject j indicates that i can monitor and
punish j .

The set of networks depicted in Fig. 1 has several interesting architectures exem-
plifying a number of simple yet fundamental concepts in graph theory (defined in
the next section) that allow us to interpret variation in the experimental outcomes.
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Fig. 1 Network architectures and summary statistics

Figure 1 also reports the total contribution rates, punishment levels and overall payoff
efficiency (net of the costs of being punished and punishing) across networks. From
these data we can immediately infer that there are significant differences in subjects’
behavior across the different networks.

Our key results are as follows:

• Cooperation Although contributions vary dramatically from network to network,
connected networks [1]–[4], within which everyone is monitored, demonstrate sig-
nificantly higher contributions than disconnected networks [5]–[8]; however, the
complete network [1] does not elicit significantly more contributions than the other
connected networks.

• Punishment More punishment is used to maintain or increase contributions in
directed networks [2] and [5]–[7] where the edges point in only one direction,
relative to undirected networks [1], [3], [4] and [8]. Our conclusion is that the
asymmetry in the relations between any pair of subjects in directed networks gives
different monitoring roles to different subjects, which, in turn, increases punish-
ment expenditures.
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• Efficiency While there is also considerable variation in net payoffs after subtrac-
tions for punishing others and for being punished across networks, the connected
networks such as [1] and [4] are the most efficient, whereas the disconnected net-
works such as [6] and [7] are the least efficient. In addition, adding/removing edges
from the graph does not necessarily increase/decease efficiency.

Our experiment demonstrates that network architecture has a significant impact
on the behavior of subjects in public goods games and, therefore, on the outcomes
achieved in different networks. While the major determinant of contribution levels
appears to be whether or not all the subjects are connected, not all connected networks
are equally efficient since they elicit different punishment behavior. The complete
network [1], for example, yields high contribution levels and high efficiencies both
because of and despite the fact that this architecture elicits less punishment than other
networks, such as the directed circle [2], where punishment responsibilities are not
shared. In short, while the previous literature was correct in pointing out that punish-
ment may increase contributions, it failed to investigate the subtle relationship between
network structure and performance. This paper has taken a first step in that direction.

Among our other conclusions, the fact that we find it is necessary to take into
account the details of the local neighborhood as well as the entire network architec-
ture to explain individual behavior is particularly relevant for future work. The simple
summary characteristics of the networks depicted in Fig. 1, such as the average dis-
tance between subjects, do not fully account for the subtle and complicated behaviors
that we observe. To determine the important determinants of individual behavior, it
will be necessary to investigate a larger class of networks in the laboratory. This is
perhaps one of the most important topics for future research.

The rest of the paper is organized as follows. Section 2 describes the margins along
which we extend the previous literature. Section 3 both presents the network concepts
that guided our experimental design and the design itself. Section 4 summarizes ques-
tions and hypotheses that can be addressed using the experimental data. Section 5
provides the empirical analysis. Section 6 discusses the results and provides some
concluding thoughts.

2 Closely related literature

The papers most closely related to ours, Carpenter (2007) and O’Gorman et al. (2009),
are those that also allow for costly punishment. Carpenter (2007) compared the com-
plete network [1] to two other connected networks, the directed circle [2] and the
undirected circle [3]. He found that contributions in the complete network are as
high as in the undirected circle but are significantly higher than in the directed cir-
cle; however, the number of other potential punishers, not the network structure, was
emphasized.

O’Gorman et al. (2009) compare the complete network [1] to a version of the
directed star [5] in which the subjects in the center of the star are changed randomly
each round and found that the complete network is less efficient. These results, though
based on different designs and reporting some difference in outcomes are important
primarily because they suggest that the network architecture affects the provision
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of the public good. Nevertheless, a more sophisticated and comprehensive analysis
is required to detect the underlying properties of networks that facilitate or hinder
cooperative outcomes.

Our paper contributes to the large body of experimental work on public goods, but
we will not attempt to review this literature. We also contribute to the growing liter-
ature on the economics of networks (Jackson 2008) and to the smaller, more recent,
literature on network experiments (Kosfeld 2004, provides an excellent, if now already
somewhat dated, survey).

3 Networks, theory and design

The public good game that we study can be interpreted as follows: In the first stage,
subjects simultaneously make voluntary contributions to a public good. The payoff
for each subject at the first stage equals her consumption of the public good plus her
remaining endowment. At the end of the first stage, subjects are allowed to monitor the
contributions of the subjects to whom they are connected by the social network. Thus,
we drop the standard assumption that individual contributions are public information
and assume that subjects can monitor the contributions of some, but not necessarily
all, of the other subjects. In the second stage, subjects are given the opportunity to
punish, at some cost, the other subjects to whom they are connected by the network.
The terminal payoff for each subject from both stages is given by the maximum of
either zero or her payoff from the first stage minus the punishment received and the
cost of punishing other subjects.

3.1 The networks

We restrict attention to the case of four-person networks, which has several nontrivial
architectures. Each network is represented by a graph with four nodes, indexed by
i = A, B, C, D, where at each node there is a single player. An edge between any
two subjects indicates that they are connected and the arrowhead points to the subject
whose action can be monitored (and punished). For each subject i , Ni denotes the set
of subjects j �= i who can be monitored by i . We can think of Ni as representing
subject i’s neighborhood. The collection of neighborhoods {NA, NB, NC , ND} com-
pletely define a four-person network. The set of networks used in the experimental
design is illustrated in Fig. 1. Note that edges can be directed—the fact that subject
i can monitor subject j ( j ∈ Ni ) does not necessarily imply that j can monitor i
(i ∈ N j ).

Next, we define some key graph-theoretic concepts to which we refer throughout
the paper. Our notation and definitions are standard, but to avoid ambiguity we present
the concepts in some detail. The first three properties—completeness, connectedness
and directedness—are global properties of the network architecture whereas degree
is a local property of the neighborhoods that define the network (the edges into and
out of a particular node).

• Completeness A complete network is a network in which each pair of nodes is
connected by an edge. Otherwise, the network is incomplete. Referring to Fig. 1,
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in the complete network [1] every subject directly monitors every other subject.
The rest of the networks [2]–[8] we study are incomplete.

• Connectedness A network is connected if every pair of nodes i and j is linked by a
path and disconnected otherwise.1 Obviously, subjects from disconnected compo-
nents of a network cannot monitor each other. Referring to Fig. 1, networks [1]–[4]
are connected whereas networks [5]–[8] are disconnected. Networks [7] and [8]
are disconnected, but connectedness is satisfied in a subgraph {NA, NB , NC } in
which every pair of nodes i and j are connected.

• Directedness A network is undirected if the relations between any pairs of nodes
is symmetric, so that each edge points in both directions. Otherwise, the network
is directed. A directed network in which each edge is given a unique direction
is called an oriented network. In an oriented network, if subject i can monitor
subject j ( j ∈ Ni ) then j cannot monitor i (i /∈ N j ). In our experimental design
the directed networks [2] and [5]–[7] are oriented. Networks [1], [3], [4] and [8]
are undirected as all edges are bi-directed and point to both nodes at once.

• Degree Finally, the degree of a node is the number of edges that end at that node
(a local property). In a directed graph the degree is usually divided into the out-
degree and the in-degree. The out-degree (resp. in-degree) of node i is the number
of edges with i as their initial (resp. terminal) node. Clearly, the out-degree of
subject i is the number of subjects j that can be monitored by i ( j ∈ Ni ) and the
in-degree of subject i is the number of subjects j that can monitor i (i ∈ N j ).

3.2 The game

The game is formally described using the following notation. Each subject
i = A, B, C, D is endowed with y indivisible tokens. At stage one, the subjects
simultaneously choose how many tokens 0 ≤ gi ≤ y to contribute to the provision of
the public good. The payoff for each subject i in the first stage can be summarized by

π1
i = y − gi + αḡ, (1)

where

ḡ =
∑

j=A,B,C,D

g j

and α is the marginal per capita return (MPCR). Hence, each subject receives the value
of the public good (αḡ) in addition to the number of tokens retained from her endow-
ment (y − gi ). To avoid trivialities, we assume that 0.25 < α < 1. This condition
ensures that contributing is, on one hand, socially efficient, and on the other hand,
strictly dominated for any individual subject.

1 Put precisely, for any pair of players i and j , a path from i to j is a sequence i1, . . . , iK such that i1 = i ,
iK = j and there is an edge pointing from ik to ik+1 for k = 1, . . . , K − 1. Player i is connected to j if
there is a path from i to j .
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At stage two, after subjects are informed about their individual contributions, they
can punish the subjects to whom they are connected in the network at a cost. More
precisely, each subject i can punish subject j ∈ Ni by reducing subject j’s payoff
from the first stage π1

j by p j
i tokens. The cost of reducing one token from any of the

other subjects is 0 < c < 1 tokens. We also assume that each subject i can spend up to
her entire payoff from the first stage π1

i toward reducing the payoff π1
j of all j ∈ Ni ,

and that π1
i can be reduced at the second stage to zero but that the terminal payoff for

the game cannot be negative. The payoff of subject i from both stages of the game can
therefore be summarized by

πi = max

⎧
⎨

⎩0, π1
i − c

∑

j∈Ni

p j
i −

∑

j :i∈N j

pi
j

⎫
⎬

⎭ . (2)

By backward induction, it follows that punishment cannot deter free riding in any
network architecture. We next briefly illustrate the logic of the backward induction
argument and then draw out the important implications of the theory. Since punishing
is costly, in theory each subject i will refrain from doing so at the second stage (p j

i = 0
for all i and j ∈ Ni ). Because each subject j ∈ Ni expects that subject i will never
punish her, her best response is to contribute nothing in the first stage (g j = 0). Thus,
the addition of the second stage has no effect on the outcome of the first stage which
is full free-riding, and therefore the prediction of standard theory is that gi = 0 and
p j

i = 0 for all i and j ∈ Ni . Note, however, that the aggregate payoff is maximized
if each subject i fully cooperates by contributing her endowment (gi = y).

3.3 Experimental design

The experiment was run at the Center for Experimental Social Sciences (CESS) at New
York University and at the Experimental Social Science Lab (Xlab) at the University
of California, Berkeley. The subjects in this experiment were recruited from all under-
graduate classes and had no previous experience in public good or networks experi-
ments.2 Each experimental session lasted about an hour and a half. A $5 participation
fee and subsequent earnings from playing the game were paid in private at the end of
the experimental session. The experiments provide us with a rich set of data. Table 1
below summarizes the experimental design and the number of observations in each
network treatment (the entries have the form a/b where a is the number of subjects
and b the number of observations per game).

The endowment y was 25 tokens and the marginal per capita return and the cost
of punishing were fixed at α = 0.4 and c = 0.5, respectively. The network was held

2 After subjects read the instructions, the instructions were read aloud by an experimenter. Sample experi-
mental instructions, including the computer program dialog windows are available in an Online Appendix:
http://emlab.berkeley.edu/~kariv/CKS_II_A1.pdf. At the end of the instructional period subjects were asked
if they had any questions or any difficulties understanding the experiment. No subject reported any difficulty
understanding the procedures or using the computer program.

123

Author's personal copy

http://emlab.berkeley.edu/~kariv/CKS_II_A1.pdf


J. Carpenter et al.

Table 1 Experimental design
Network Nodes # of obs./subjects

[1] A, B, C, D 240/16

[2] A, B, C, D 240/16

[3] A, B, C, D 300/20

[4] A 135/9

B, C, D 405/27

[5] B, C, D 765/51

A 255/17

[6] A 240/16

B, C 480/32

D 240/16

[7] A, B, C 180/12

D 60/4

[8] A, B, C 315/21

D 105/7

Total 3,960/264

constant throughout a given experimental session. In each session, the network nodes
were labeled A, B, C , and D. The subject’s type (A, B, C , or D) remained constant
throughout the session. Each experimental session consisted of 15 independent deci-
sion-rounds. To minimize the investment in reputations, each round started with the
computer randomly forming four-person networks by selecting one subject of each
type. The networks formed in each round depended solely upon chance and were
independent of the networks formed in any of the other rounds.

Each round of the experiment consists of two stages, the contribution stage and the
punishment stage. The contribution decision was to allocate the endowment between
a private good which only benefited the subject and a public good which benefited
everyone in the group, according to the payoff function (1). Once all the contributions
were recorded, subjects observed the contributions of the subjects to whom they were
connected by the network. In addition, all subjects were informed about the sum of
the contributions to the public good by all the subjects in their group (including them-
selves). In the punishment stage, subjects choose if and by how much to reduce the
first stage payoff of each of the other subjects with whom they were connected by the
network. If they did not wish to reduce the earnings of another subject they had to
enter zeros. At the completion of the two stages, the computer informed the subjects
of their total payoffs according to the payoff function (2).

4 Research questions

We next identify questions and hypotheses that can be explored using the experi-
mental data. Our experimental design allows us to make direct comparisons to test
the importance of each of the four properties of network architecture—completeness,
connectedness, directedness, and degree. Recall that completeness, connectedness and
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directedness are global properties of the network architecture whereas degree is a local
property of the neighborhoods that define the network.

• Completeness To test the importance of the network being complete, we compare
the complete network [1] to two other networks that are incomplete—the undi-
rected circle [3] and the undirected star [4]. This comparison is salient because,
while both the undirected circle and the undirected star are incomplete, they are
connected and undirected like the complete network.

• Connectedness To test the importance of the network being connected, we com-
pare the directed circle [2] to line [6] because removing just one edge renders the
directed circle disconnected. We also compare the directed circle to disconnected
directed circle [7], and the undirected circle [3] to the disconnected undirected
circle [8].

• Directedness To examine the impact of the network being directed, we compare
the directed and undirected circles [2] and [3], and the disconnected directed and
undirected circles [7] and [8]. We also compare the directed star [5] to the undi-
rected star [4]. The only complication here is that the comparison of the directed
and undirected stars might be confounded by the fact that directed star is also
disconnected while the undirected star is not.

• Degree Finally, we examine local network effects as implied by individual con-
nectivity. In particular, we test whether subjects who are otherwise similarly situ-
ated (same in-degree and out-degree) behave differently in different networks. For
example, we compare the behavior of all subjects in the directed and undirected
circles [2] and [3] to the behavior of subjects A, B and C in the disconnected
directed and undirected circles [7] and [8], respectively.

5 Experimental results

In this section we report the results of our experiment. We proceed by systemati-
cally evaluating the three global properties of network architecture—completeness,
connectedness and directedness. We then detect the effect of differences in network
architectures by comparing the behavior of subjects that are symmetrically situated in
different networks. Figure 1 above provides a summary of our results. Statistics for
three metrics of group performance—average contributions as a fraction of the total
endowment, probability of punishing a subject who contributes nothing, and payoffs
net of the costs of being punished and punishing—are reported directly next to each
network so that one can begin to map outcomes onto architecture. Along the way we
will use a combination of nonparametric rank sum tests (|z|) and proportions tests (|r |).
Where appropriate, we will also run parametric regressions that account for individual
heterogeneity (using random effects) and learning (using period fixed effects), and add
the appropriate controls.

5.1 Completeness

On average, subjects contributed 56 % of their endowment in our complete
network [1]. This behavior is similar to the “stranger” contribution levels found by
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Fehr and Gächter (2000) and Carpenter (2007) of 58 and 61 %, respectively. While
the complete network elicits contributions in line with other experiments, it does not
yield the highest average contributions. Indeed, when comparing all the networks, the
directed circle [2] generates the highest average contribution of 60 % of the endow-
ment, a rate that is statistically greater than all the others except the complete network.

Limiting attention to the undirected connected networks [1], [3] and [4] is most
interesting because the only difference between them is whether they are complete.
When we consider the summary statistics in Fig. 1 and the direct comparisons in
Fig. 2a below, it does not appear that the complete network results in robustly higher
contributions. While the mean contribution pooled across rounds is slightly higher in
the complete network [1], it is not significantly higher than in the undirected circle [3]
and only marginally significantly higher than in the undirected star [4] (|z| = 0.64,
p = 0.52; |z| = 1.99, p = 0.05, respectively). In fact, when we control for indi-
vidual heterogeneity and repeated play, we do not find any significant differences in
contributions (see column (1) of Table 2 in which the complete network is the omitted
network).

Figure 1 above also lists the unconditional probability that a subject who con-
tributes nothing will be punished in each of the networks. In the complete network
[1] total free-riders are punished 48 % of the time; this rate is only slightly higher
than in the undirected circle [3] or the undirected star [4], 42 and 47 %, respectively.
A proportions test suggests that these three rates are not different (|r | = 0.47,
p = 0.64; |r | = 0.18, p = 0.86, respectively). However, while the incidence of
punishment might not vary between the complete network and undirected circle or
undirected star, the severity does. Summarizing punishment is tricky because pun-
ishment occurs in relation to contributions, which vary. In Fig. 2b below we plot the
estimated relationship between a subject’s contribution and how much she was pun-
ished in the case of the complete network, the undirected circle, and the undirected
star.

As in Carpenter and Matthews (2009), we utilize a spline specification to
allow punishment to diminish more quickly above the implied contribution norm.
When we do so, the “knot” that maximizes the regression F statistic, and in
this sense fits the data best, occurs when 10 tokens are contributed; that is,
the degree to which a subject is punished in relation to how much she con-
tributes decreases more rapidly as contributions increase from 0 to 10 tokens
than as they increase beyond 10 tokens. As one can see Fig. 2b, punishment
levels are much lower in the complete network [1]. This finding is confirmed
when we regress positive punishment amounts on network indicators and find
that the estimated punishments in the undirected circle [3] and the undirected
star [4] are significantly larger than in the complete network (see column (4) of
Table 2).3

3 Punishment levels might be lower in complete networks because subjects face a coordination problem.
Without directly communicating about how much punishment should be levied and how it should be shared,
everyone continues to punish, but they are each forced to estimate, on their own, how much to reduce the
severity of punishment to account for the actions of the other subjects.
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Table 2 Comparing outcomes across networks

Dependent variable (1) (2) (3) (4) (5)

Contribution Contribution Contribution Punishment Payoff

[2] Directed circle 3.974 2.374 2.102 4.471 ∗ ∗∗ −1.621

(3.396) (2.072) (2.095) (1.574) (1.382)

[3] Undirected circle 0.301 −0.168 −0.268 2.811* −3.005**

(3.195) (1.946) (1.967) (1.557) (1.311)

[4] Undirected star −1.673 −0.908 −1.108 3.069** −0.964

(2.868) (1.748) (1.767) (1.443) (1.174)

[5] Directed star −7.117*** −3.411** −3.716** 2.607* −3.307***

(2.656) (1.665) (1.687) (1.494) (1.086)

[6] Line −10.832*** −5.926*** −6.237*** 3.984*** −4.049***

(2.676) (1.701) (1.721) (1.425) (1.093)

[7] Disconnected directed circle −4.857 −2.383 −2.724 10.058*** −3.513***

(3.383) (2.224) (2.240) (1.977) (1.382)

[8] Disconnected undirected circle −3.022 −1.385 −1.740 3.187** −1.264

(2.987) (1.926) (1.943) (1.572) (1.225)

Lagged punishment received 0.214*** −0.003

(0.03) (0.25)

Lagged contribution 0.530*** 0.530***

(0.03) (0.03)

Constant 17.016*** 3.408** 3.702** 1.283 32.937***

(2.423) (1.546) (1.570) (1.254) (1.047)

Time period fixed effects Yes Yes Yes Yes Yes

Punishment × network interactions No No Yes No No

Rho 0.68 0.49 0.49 0.41 0.24

Prob > Chi2 <0.01 <0.01 <0.01 <0.01 <0.01

# of obs. 3,960 3,080 3,080 886 3,960

The complete network [1] is omitted. Robust standard errors in parentheses. Tobit regressions adjust for
censoring of the dependent variable at zero and one. *, **, *** Significance at the 10, 5, and 1 % levels,
respectively

Taken together, relatively high contribution levels and low punishment expendi-
tures make the complete network [1] one of the most efficient architectures. The mean
payoff net of the costs of being punished and punishing in the complete network is
significantly higher than in the undirected circle [3] (|z| = 4.13, p < 0.01) and mar-
ginally significantly higher than in the undirected star [4] (|z| = 1.61, p = 0.10).
These results are largely replicated when we control for individual random effects and
time period fixed effects (see column (5) of Table 2). As one can see in Fig. 2c above
the performance of the complete network tends to improve, relative to the undirected
circle and the undirected star as the experiment proceeds. In sum, the complete net-
work does not seem to be better at eliciting contributions but, because its punishment
levels tend to be lower, it does achieve higher than average efficiency.
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5.2 Connectedness

The differences between connected and disconnected networks can be seen by com-
paring the left column of Fig. 1 to the right column. The contribution differences
are striking: there is no disconnected network [5]–[8] that yields higher mean pooled
contributions than even the lowest-performing connected network, the undirected star
[4]. However, to conduct our analysis systematically, remember that we need to com-
pare the directed circle [2] to the line [6] and to the disconnected directed circle [7],
and the undirected circle [3] to the disconnected undirected circle [8] directly, which
we do in Fig. 3a, b, c below. In each comparison, the connected networks yield sig-
nificantly higher pooled contributions (|z2−6| = 14.00, p < 0.01; |z2−7| = 7.31,
p < 0.01; |z3−8| = 4.38, p < 0.01), and these results are mostly robust to an analysis
that controls for individual heterogeneity and repeated game effects. If we compare
the point estimates (see column (1) of Table 2), we find that the coefficient of the
directed circle is higher than the coefficients of the line and the disconnected directed
circle (p < 0.01). Similarly, the coefficient for the undirected circle is higher than the
one for the disconnected undirected circle; however, in this case the difference is not
significant at standard levels (p = 0.23).

Although the evidence is mixed, connected networks also appear to elicit at least
as much punishment, in terms of both incidence and level. The information in Fig. 1
suggests that the probability of punishing a total free-rider is higher in the directed
circle [2] than in the line [6] (|r | = 3.49 , p < 0.01), higher in the undirected circle [3]
than in the disconnected undirected circle [8] (|r | = 4.38, p < 0.01), and no lower in
the directed circle than in the disconnected directed circle [7] (|r | = 1.10, p = 0.27).
The full punishment splines in Fig. 4a, b, c below, which are based on an analysis
of all the punishment data (including zero punishments), seem to indicate that there
is more punishment in connected networks. However, considering only the positive
observations, the differences do not appear to be robustly significant (see column (4)
of Table 2).

There also appears to be mixed evidence of an efficiency advantage in connected
networks. While the information in Fig. 1 indicates that the directed circle [2] yields
higher mean payoffs than line [6] and the disconnected directed circle [7] (|z| = 5.20,
p < 0.01; |z| = 2.49, p < 0.01 , respectively), the payoffs in the disconnected undi-
rected circle [8] actually tend to be higher than in the undirected circle [3] (|z| = 1.81,
p = 0.07). Looking at the difference in mean payoff over all rounds of the experiment,
as shown in Fig. 5a, b, c below, we see little evidence of differences; these results are
also seen by comparing the estimates, in which only the payoff difference between the
directed circle and the line [6] is significant (see column (5) of Table 2). To summarize,
although it is clear that connected networks tend to achieve higher contribution levels,
connectedness does not always lead to different punishment levels or robustly higher
average efficiency.

5.3 Directedness

A network is undirected if each edge points in both directions. Otherwise, the network
is directed. In studying Figs. 1 and 3d, e, f above one can see that the directed circle
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[2] elicits higher average contributions than the undirected circle [3] (|z| = 2.20,
p = 0.03). However, when one subject is isolated, the disconnected undirected circle
[8] does better than the disconnected directed circle [7] (|z| = 3.76, p < 0.01), and
also in the star architecture, the undirected star [4] yields higher contributions than
the directed star [5] (|z| = 11.13, p < 0.01). That said, only the difference between
the star networks remains significant (p < 0.01) when we include individual random
effects and time period fixed effects (see column (1) of Table 2).

Comparing the probabilities of punishing a total free-rider as shown in Fig. 1 and
the punishment splines shown in Fig. 4d, e, f above, we also find that the effect of
directedness on punishment is network-dependent. The directed circle [2] yields a
higher likelihood than the undirected circle [3] of a free-rider being punished; in fact,
the directed circle yields the highest likelihood of all the networks of subjects who
contributed nothing being punished. Nevertheless, the difference is not quite statisti-
cally significant (|r | = 1.39, p = 0.16) because there are very few observations of
total free-riding in these two networks.

Furthermore, there is a large difference between the chance of a total free-rider
being punished in the disconnected directed circle [7] and in the disconnected undi-
rected circle [8]. Here the directed network yields both a higher instance of punishment
(|r | = 3.38, p < 0.01) and a significantly higher level of punishment (p < 0.01),
as can been seen by comparing the point estimates (see column (4) of Table 2). As
was the case for contributions, the effect of directedness reverses in this domain as
well when we consider the star architecture, as one sees in comparing the undirected
star [4] and the directed star [5], but this difference also does not achieve statistical
significance (|r | = 1.52, p = 0.13).

The marginally significant contribution and punishment differences between the
directed and undirected networks combine to provide significant payoff differences.
Although not obvious from Fig. 5d, e, f, the directed circle [2] results in higher average
payoffs than the undirected circle [3] (|z| = 2.06, p = 0.04), and the undirected star
[4] does better than the than the directed star [5] (|z| = 7.00, p < 0.01). On the other
hand, the disconnected undirected circle [8] yields higher average payoffs than the
disconnected directed circle [7] (|z| = 3.38, p < 0.01). Except for the comparison
between the directed and undirected circles, these payoff differences remain signif-
icant after controlling for individual heterogeneity and learning (see column (5) of
Table 2).

To summarize, more than in the case of both completeness and connectedness,
the effect of directedness seems to depend on the structure of the network. When the
underlying network is connected, there is some evidence that directedness leads to
more cooperation and punishment, and to higher payoffs. When both the directed and
undirected networks include a completely disconnected subject we find the opposite
of the connected case—directed edges in this structure lead to much more punishment
but not more cooperation or higher payoffs. Lastly, when the underlying structure
is star-shaped, having a disconnected “prison guard” (the center of the star who can
punish the three subjects at the periphery) is particularly bad for contributions and
payoffs.
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Table 3 The out-degree and
in-degree

Degree Nodes (subjects)

0-out | 0-in N7,0,0(D), N8,0,0(D)

0-out | 1-in N5,0,1(B, C, D), N6,0,1(D)

1-out | 0-in N6,1,0(A)

1-out | 1-in N2,1,1(A, B, C, D), N4,1,1(B, C, D),

N6,1,1(B, C), N7,1,1(A, B, C)

2-out | 2-in N3,2,2(A, B, C, D), N8,2,2(A, B, C)

3-out | 0-in N5,3,0(A)

3-out | 3-in N1,3,3(A, B, C, D), N4,3,3(A)

5.4 The impact of global/local network

To this point, we thoroughly studied the global network effect as represented by the
completeness, connectedness and directedness of the entire network. We next study
the local network effect as represented by the local links a subject has, and discuss both
the global and local network effects. Recall that degree is mostly a nodal property,
and while our experiment was not designed to systematically add or remove edges
(largely because this would confound comparisons of the other properties), we can
now use the concept to transition from analyzing the overall performance of a net-
work to analyzing the effect of broader network structures on the behavior of subjects
who have the same local neighborhoods (that is, occupy nodes of common out- and
in-degrees). The question then is do networks have an impact on the contribution and
punishment behavior of subjects inhabiting identical nodes. The answer is that when
the underlying structures are significantly different, they clearly do because nodal
behavior appears to be affected by significant changes in network architecture.

Since nodes are defined by their out- and in-degrees, we can index them as Nn,o,i

to indicate a node in network n with o out-degree o and in-degree i . For example,
N6,1,1 are nodes B and C in the line network [6]. Note that all nodes in the undirected
circle [2] also have 1 out-degree and 1 in-degree (they are all defined as N2,1,1) so they
also share the same same local neighborhood as nodes B and C in the line network
[6] although they are in different networks. For notational convenience, we simply
leave n unspecified when we consider nodes outside the context of their networks.
For example, Nn,1,1 denotes the generic 1 out-degree and 1 in-degree node. Table 3
catalogues the nodes that exist in our experiments, the networks they are part of, and
the subject types that inhabit them.

By design, most nodes exist in several networks; however, some nodes are rare and
have only one representative. The most common node is Nn,1,1 since it occurs in four
networks: the undirected circle [3], the undirected star [4], the line [6], and the discon-
nected directed circle [7]. Other flexible nodes are Nn,3,3 in the complete networks
[1] and undirected star, Nn,2,2 in the undirected circle [3] and disconnected undirected
circle [8], Nn,0,1 in the directed star [5] and line [6] networks, and the isolated nodes
Nn,0,0 in the disconnected directed and undirected circles. Nodes Nn,3,0 and Nn,1,0
exist in only one network and hence will not be discussed. In sum, as catalogued in

123

Author's personal copy



Network architecture, cooperation and punishment

Table 3, five of the seven nodes we study exist in more than one network. Differ-
ences in the behavior and outcomes of subjects who occupy the same node in different
networks are depicted in Fig. 6 below. To test for differences in nodal outcomes by
network, we use nonparametric tests and regress contributions, positive instances of
punishment, and payoffs on node indicators (see columns (1–3) of Table 4).

5.4.1 Nn,3,3

Let us first discuss the Nn,3,3 nodes. Because neither the results of the summary test
(|z| = 0.43, p = 0.67) nor the point estimates different are significant (p = 0.98),
contributions do not seem to differ for subject who find themselves in nodes Nn,3,3
in the complete network [1] or the undirected star [4]. However, the subjects who
find themselves at the center of the undirected star punish more (p = 0.05), and as
a result accrue lower payoffs (p = 0.01), than the subjects in the complete networks
(see columns (1) and (2) of Table 4). Clearly, the punishment responsibilities are more
salient to the subject at the star’s center. In this sense the different network structures
change the behavior and outcomes at N1,3,3 and N4,3,3 significantly.

5.4.2 Nn,2,2

The Nn,2,2 node exists in the connected and disconnected undirected circles [3] and [8].
The difference between these networks is that one subject is completely disconnected
in disconnected directed circle, while all subjects are connected in the directed circle.
Figure 6b and the summary tests suggest differences in contributions and punishment
between occupiers of the Nn,2,2 node in these two networks. Subjects in the connected
network contribute and punish more (|z| = 3.88, p < 0.01; |r | = 1.81, p = 0.07).4

However, in terms of payoffs, the larger N3,2,2 contributions and punishments tend
to “net out”; there is no evidence of payoff differences between the two Nn,2,2 nodes
(|z| = 1.11, p = 0.27).

The results thus suggest that having someone completely disconnected from the
monitoring network affects the outcomes for the subset of connected subjects. In
other words, the connected subjects A, B and C in the disconnected directed circle
do not simply ignore subject D. In fact, one could imagine that subject D becomes a
scapegoat because she does not have to fear punishment and therefore it would appear
to the other subjects that it would be easy for her to free-ride. Ironically, the isolated
subjects in the disconnected directed circle actually appear to play with considerable
integrity; in fact, they contribute at levels comparable to the three connected members
of the network (|z| = 0.86, p = 0.39).

5.4.3 Nn,1,1

We see the most variation in behavior among the Nn,1,1 nodes. The mean fraction
contributed by subjects in the directed circle [2] was 0.60 while that same node, in

4 While these differences survive the inclusion of period fixed effects, the substantial individual heteroge-
neity can reduce their significance (see columns (1) and (2) of Table 4).
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Table 4 Comparing outcomes across nodes

Dependent variable (1) (2) (3)

Contribution Punishment Payoff

N5,3,0 3.883 0.483 −0.668

(2.801) (1.685) (1.241)

N1,3,3 13.399*** −2.124 1.988

(3.365) (1.815) (1.367)

N4,3,3 13.514*** 1.295 −2.021

(3.941) (1.939) (1.611)

N3,2,2 13.701*** 0.686 −1.017

(3.184) (1.743) (1.297)

N8,2,2 10.796*** 1.063 0.055

(3.150) (1.754) (1.283)

N2,1,1 17.360*** 2.345 0.367

(3.384) (1.757) (1.367)

N4,1,1 11.131*** 0.695 2.043*

(3.002) (1.790) (1.220)

N6,1,1 3.749 2.911* −3.004**

(2.921) (1.742) (1.184)

N7,1,1 9.687*** 7.942*** −2.438*

(3.630) (2.130) (1.477)

N5,0,1 7.070*** −1.536

(2.668) (1.094)

N6,0,1 2.803 −2.237*

(3.393) (1.367)

N7,0,0 5.002 1.276

(5.377) (2.162)

N8,0,0 9.126** 2.728

(4.288) (1.752)

Constant 3.611 3.382** 30.947***

(2.422) (1.476) (1.038)

Time period fixed effects Yes Yes Yes

Rho 0.68 0.41 0.23

Prob > Chi2 <0.01 <0.01 <0.01

# of obs. 3,960 886 3,960

Node N6,1,0 is omitted. Robust standard errors in parentheses. Tobit regressions adjust for censoring of the
dependent variable at zero and one. *, **, *** Significance at the 10, 5, and 1 % levels, respectively

the undirected star [4], the line [6], and the disconnected directed circle [7] produced
contribution levels of just 0.49, 0.27, and 0.38 respectively. Using a Kruskal–Wallis
test, we find that network structure has a significant impact on nodal performance
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(χ2 = 177.37, p < 0.01).5 In short, the Nn,1,1 nodes elicit high contributions when
embedded in connected networks, with the directed circle [2] being the most hospi-
table network for such nodes and the line being the most inhospitable network for
them.

The impact of network structure on nodal performance can also be seen in the
punishment behavior of Nn,1,1 subjects since while the mean punishment given by
subjects in the directed circle [2] is 2.67, it is 0.78, 1.10, and 2.26, respectively, for the
subjects in the Nn,1,1 nodes of undirected star [4], the line [6], and the disconnected
directed circle [7]. Another Kruskal–Wallis test indicates that these differences are
significant (χ2 = 24.33, p < 0.01).6 Note that while punishments are highest in the
directed circle, they are lowest in the undirected star, which is also connected. This is
not too surprising since in the star there are three subjects who have the opportunity
to punish the one subject in the center of the star. Again, such a plethora of punishers
appears to create a coordination problem: who will be responsible for punishing the
subject in the center of the star?

Another factor that might account for the relatively low punishment in undirected
star [4] is the fact that the N4,1,1 subject have mutual links—not only can they monitor
and punish their neighbors, their neighbors can punish them. Occupiers of the Nn,1,1
node in other networks, however, punish one neighbor and are punished by another.
Hence, the subjects in nodes N4,1,1 might show more restraint compared to the sub-
jects in other Nn,1,1 nodes because they are afraid of engaging in punishment feuds
(Nikiforakis 2008). It is also interesting that the mean punishment levels do not differ
much between the connected and disconnected directed circles [2] and [7], a result
that is not too surprising considering the monitors in the disconnected circle form their
own three-person version of the connected circle.

In terms of payoffs, the Nn,1,1 node clearly does best in connected networks.7 If
one were to look for a common feature to explain this difference, it might be that
in the disconnected networks, the line [6] and the disconnected directed circle [7],
there exists one subject who is not monitored and cannot be punished. So despite the
fact that subjects in these nodes seem to be playing the same monitoring-punishment
game locally, globally they realize that there is one subject that has no incentive to
contribute. In this sense, the broader network matters.

5.4.4 Nn,0,1 and Nn,0,0

The two remaining types of nodes to compare are Nn,0,1 and Nn,0,0. Because they
all involve subjects who do not punish (out-degree zero), the four instances of these
two different types of nodes are combined in Fig. 6d. As to subjects in nodes Nn,0,1,

5 If done pairwise, all the differences are significant when the nonparametric rank sum test is used and
most of them survive the addition of individual random effects and time period fixed effects (see column
(1) of Table 4).
6 Here the N2,1,1 versus N7,1,1 and N4,1,1 versus N6,1,1 comparisons do not survive when the analysis is
done pairwise.
7 While all the pairwise comparisons are significant when the nonparametric test is used, only the differ-
ences between the connected and disconnected networks survive the analysis (see column (3) of Table 4).
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the results of the nonparametric test suggest that subjects B, C , and D in the directed
star [5] contribute significantly more than subject D does in the line [6] (|z| = 4.18,
p < 0.01). This can be accounted for by the higher incidence of punishment in the
directed star. As to the isolated subjects in nodes Nn,0,0 , perhaps as expected, the
behavior of subject D does not appear to depend on being in the disconnected directed
circle [7] or the disconnected undirected circle [8].

6 Discussion

In the previous section we examined each network property separately in detail. How-
ever, it might be helpful to combine the effects of all the properties in one summary
analysis. Is it the case that these properties provide the foundation for the successes
and failures shown in Fig. 1? In Table 5 we regress our three measures of network
performance—contributions, punishment, and efficiency—on the three properties of
network architecture—completeness, connectedness, and directedness. Among the
networks examined here, [1] is the only complete network; all the rest are incomplete.
Networks [1]–[4] are connected, while networks [5]–[8] are disconnected. Networks
[2], and [5]–[7] are directed, while networks [1], [3], [4], and [8] are undirected. We
also add an aggregate measure of degree by calculating the total number of edges for
each network.

• Contributions When we control for the other properties we find that connected net-
works yield significantly more contributions than disconnected networks but that
there are no significant differences in the contributions with regard to the other

Table 5 The effect of network properties

Dependent variable (1) (2) (3)

Contribution Punishment Payoff

Complete −8.042 −2.811* 6.050**

(7.626) (1.487) (3.099)

Connected 5.336*** 0.565 1.398*

(2.055) (0.427) (0.832)

Directed 2.267 2.143*** −4.145**

(4.267) (0.848) (1.733)

Degree (total) 1.435 0.379 −0.899*

(1.357) (0.266) (0.552)

Rho 0.698 0.288 0.247

Prob > Chi2 <0.01 <0.1 <0.01

# of obs. 3,960 4,647 3,960

Degree is the total number of edges for each network. Robust standard errors in parentheses. Tobit regres-
sions adjust for censoring of the dependent variable at zero and one. *, **, *** Significance at the 10, 5,
and 1 % levels, respectively
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properties. The effect of connectedness is not only statistically significant, five
more tokens contributed in the connected networks out of a 25-token endowment
is substantial (see column (1) of Table 5).

• Punishment Two properties, completeness and directedness, affect the amount of
punishment. Together, these point estimates suggest an interesting interpretation.
The fact that the complete network (in which the ‘policing’ of free-riders is very
decentralized) yield lower sanctions and that directed networks (in which it is the
responsibility of just one subject to punish a free-rider) yield higher sanctions rein-
forces the idea that punishers face the coordination problem mentioned above (see
column (2) of Table 5).

• Efficiency It might be the case that punishment is too severe in directed net-
works and that a little ambiguity with regards to punishment enhances payoffs
in the complete network. When combined, all four properties significantly affect
final net payoffs. Not only do payoffs in the complete network do well while
those in directed networks suffer because of differences in the amount of pun-
ishment; additional edges also reduce payoffs, perhaps because they tend to be
used too often to punish, and connected networks do better (see column (3) of
Table 5).

The effect of connected networks on efficiency is particularly interesting because
it appears even after controlling for punishment dynamics. In other words, part of
the success of connected networks occurs for reasons beyond their ability to distrib-
ute punishment. Given the differences between networks with regard to their ability
to monitor and punish other subjects, it is important to examine the extent to which
network differences in punishment can explain the differences that we see in contri-
butions.

Returning to the contribution regression analysis in Table 2, in column (2) we
add the lag of received punishment and the lag of contributions. We add the lag of
contributions to control for level differences: while free-riders can increase their con-
tributions substantially, high contributors can only increase their contributions slightly,
regardless of how much punishment they receive. As expected, punishment is highly
significant. For each token of punishment the average subject receives, she increases
her contribution by about 0.2 tokens. As important, however, is the fact that the addi-
tion of punishment has reduced (compared to those shown in column (1) of Table 2),
all the coefficients on the network indictors, some substantially. Clearly, a large part of
the variation in contributions previously attributed to the differences in the networks
is really due to differences in the amount of punishment generated by the different
networks.

In column (3) of Table 2 we examine a robustness check on our punishment anal-
ysis. The model in column (2) assumes that subjects have a common response to
punishment. In column (3) we add (unreported) interactions that allow the response to
punishment to vary by network. In addition to finding that the added interactions do
not change the results much, a chi-squared test of the joint significance of the interac-
tions suggest that those interactions add nothing to the results reported in column (2)
of Table 2 (χ2 = 2.85, p = 0.90). Thus, assuming a common response to punishment
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Fig. 7 The estimated marginal
benefit of adding edges

seems reasonable. In short, a major reason for the differences seen in contributions
across the networks is that the some networks elicit a lot of punishment and others do
not.8

We end our discussion by speculating, based on our results, about the “optimal”
number of edges in the standard four-person public good game with punishment. If,
in the end, we are mostly concerned about the efficiency with which public goods are
provided, then we have to look at payoffs net of the costs of punishing and being pun-
ished. If we estimate the effect of the number of edges on net payoffs, we find that all
three coefficients of a third-order polynomial specification are significant. The deriv-
ative of this function provides us with an estimate of the marginal benefit of adding
edges to the monitoring network. The marginal benefit is plotted in Fig. 7 below.

The shape of the plot in Fig. 7 is interesting and informative. We see that the mar-
ginal benefit actually becomes negative when between five and nine edges are added.
In other words, it makes sense to add edges one through four or edges nine through
12, but adding edges to networks that have already between four and eight seems to
actually reduce average payoffs. The precision of this estimate nicely summarizes the
implications of our results. In three-edge networks like the directed star [5], the line
[6], and the disconnected directed circle [7] the problem is straightforward: there is
not enough monitoring, and therefore more edges should be added. At the same time,
networks with eight edges, like the undirected circle [3], actually have the opposite
problem. Here there is more punishment than can be supported by the level of contri-
butions. Ironically, one way to reduce the amount of punishment is to add more edges
because this will lower the responsibility of any given monitor, and this ambiguity
seems to induce some monitors to reduce punishment to a level that ends up being
closer to optimal.

8 We also made sure that the mediation of the network affects on contributions by adding punishment is
not due to the fact that the data from all the subjects who cannot be punished (in nodes N5,0,1, N6,0,1,
N7,0,0, and N8,0,0) are dropped in column (2) of Table 2. In another regression, we replaced the missing
punishment values with zeros and found that the resulting point estimates are almost identical.
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